Methods of Increasing Net Work Output of Organic Rankine Cycles for Low-Grade Waste Heat Recovery
نویسندگان
چکیده
In heat engine design, the usual objective is to maximize thermal efficiency. However, for heat engines applied to waste heat recovery, an appropriate objective is to maximize power production by converting as much of the waste heat as possible into work. An organic Rankine cycle (ORC) is particularly well-suited to waste heat recovery because of its compactness relative to a steam Rankine cycle at typical waste heat temperatures. For a single-phase (sensible) waste heat stream with a finite capacity, maximization of thermal efficiency does not result in maximum power production. Therefore, traditional approaches aimed at increasing cycle thermal efficiency are not helpful. Instead, it is necessary to find designs that properly balance heat extraction from the source and thermal efficiency of the heat engine. In this regard two alternative ORC configurations are studied and compared using a uniform modeling strategy. These configurations are the ORC with two-phase flash expansion and the ORC with zeotropic working fluid mixture (ZRC). There are two key elements of the modeling strategy. Pinch point temperature differences are used to characterize the heat exchangers, and the air-side condenser fan power requirements are estimated. Each cycle configuration is modeled and compared to a baseline ORC for a range of potential working fluids and source fluid temperatures. Based on the model, the ORC with flash expansion shows the most consistent improvement over the baseline ORC. The highest increase in net power of 84% over the baseline is seen at the low source temperature of 80 °C with water as the working fluid. However, this cycle and working fluid present more costly challenges to implementation, particularly in the expander design. This is due to the high volume ratios needed to expand lowpressure, two-phase water. The ZRC gives some of the highest relative improvements, but only when condenser fan power consumption is high. For a 100 °C source temperature and a mixture of R134a and R245fa as the working fluid, an improvement of 92% over the baseline is seen if the required condenser fan power is 846 W/(m 3 /s). In addition, the ZRC has the benefit that it can utilize existing ORC expanders, giving it a potentially lower cost than the ORC with flash expansion. These results are valid in terms of their comparison of the thermodynamic potential of the different cycles and working fluids. However, a more detailed analysis incorporating the geometry and cost of each component is necessary to arrive at a final recommendation for a given application.
منابع مشابه
Increasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle
This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...
متن کاملEnergy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources
Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC). This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targe...
متن کاملA steam Rankine cycle with two-stage pumping to enhance the waste heat recovery from internal combustion engines
In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean ...
متن کاملThermodynamic Performance of Regenerative Organic Rankine Cycles
ORC (Organic Rankine Cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC with regeneration is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the turbine inlet pressure on the characteristi...
متن کاملExergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold
The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...
متن کامل